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Micro (mi)RNAs are small, regulatory RNA molecules that are integral components of the genetic program in the majority of
cells. They are thought to regulate up to one third of all human genes and have been linked to critical processes in disease
pathogenesis. The diverse role of miRNAs in disease pathogenesis suggests that the modulation of miRNA function by utilizing
techniques such as the use of antagomirs, locked nucleic acids, or miRNA sponges may produce novel therapeutic approaches.
In this review, the current understanding of post-transcriptional gene regulation by miRNAs is discussed and insights into
the function of miRNAs in tumorigenesis, immune responses, muscle function, organogenesis, and cell-lineage decisions are

reviewed.
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Introduction

Post-transcriptional inhibition of translation by
miRNAs

Micro (mi)RNAs are small (approximately 22 nucleotides)
regulatory RNA molecules. They are integral components
of the genetic program in the majority of cells and are
also expressed by some viruses [1-6]. Their genes are
localized within the introns of protein-coding genes or
non-coding regions of the genome [1,2,7-9]. Since the
discovery of the first miRNA, Lin-4, over a decade ago
[10], thousands of small ‘non-messenger' RNA molecules
have been identified and are tabulated in miRNA registries
[11-14]). However, only a limited number of miRNAs, many
of which are ubiquitously expressed, account for differences
in miRNA profiles between diverse cell types and tissues.
Landgraf et al cloned and sequenced approximately
330,000 RNA sequences, which were derived from
256 small RNA libraries prepared from human and rodent
cell lines and organ tissues, and identified 416, 386 and
325 miRNA precursor genes present in the human, mouse,
and rat genomes, respectively [15es]. Most of these
miRNAs were highly conserved between species and less
than a third were identified at high expression levels or
expressed with a high degree of tissue specificity [15es].
Therefore, the number of miRNAs with functional relevance
in human and animal cells may be far less than previously
estimated.

A complex set of proteins is required for the processing of
long primary miRNA molecules into stem-loop precursors,
their active transport into the cytoplasm and cleavage
into miRNA duplexes of approximately 22 nucleotides
in length {1,4-6,16-24]. In the cytoplasm the functional
strand of the mature miRNA duplex may dissociate from
its complementary non-functional strand and locate within
the RNA-induced silencing complex (RISC), composed of
Dicer RNase III (Dicer), its partner transactivation response
RNA-binding protein, and Argonaute protein, while the
passenger strand is degraded (Figure 1) [25]. In contrast with
small interfering (si)RNAs, the functional miRNA strand is
usually not fully complementary to the sequence of its target
mRNAs, and recognition of its cognate targets is guided by
a seven-nucleotide site, termed the seed sequence, in the
S' end of the miRNA [26,27]. The 3' region of the miRNA
may be partially zipped up with the free 5' regions of the
target mRNA [1]. However, seed matches alone guided by
the base-pairing rules of Watson and Crick are not always
sufficient for binding to mRNA. Target factors that boost
miRNA efficacy include AU-rich nucleotide composition near
the miRNA binding site, positioning of the binding site within
the 3' untranslated region (UTR) but away from the center
of long UTRs, proximity to binding sites of other miRNAs
to facilitate cooperative action, and the amount of mRNA
and miRNA complexes [28-30]. Despite the complexity
of target recognition, computationa! evidence suggests
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Figure 1. Post-transcriptional inhibition of translation by miRNAs.
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The functional strand of the mature micro (mi)RNA duplex locates within the RNA-induced silencing complex (RISC), which is composed
of Dicer RNase Il (Dicer), transactivation response RNA-binding protein (TRBP) and Argonaute 2. Recognition of its cognate mRNA
targets is guided by a seven-nucleotide site in the 5’ end of the miRNA, termed the seed sequence. Binding produces translational

repression. 18s 18s ribosome, 28s 28s ribosome.

(Adapted with permission from the American Thoracic Society and Mattes J, Yang M, Foster PS: Regulation of microRNA by antagomirs:
A new class of pharmacological antagonists for the specific regulation of gene function? Am J Respir Cell Mol Biol (2007) 36(1):8-12

© 2007 American Thoracic Society) [16].

that as many as 200 genes may be regulated by a single
miRNA [31]. Notably, several miRNAs may be required
to bind to one mRNA target for combinatorial control of
protein translation [1]. Therefore, miRNAs are proposed to
regulate up to one-third of all human genes at the
post-transcriptional level [32]. While miRNA targets are still
ill defined, computer-based tools are readily available to
predict the target genes of a respective miRNA based on the

complementarity to its seed sequence [31-40]. Reliability -

in the identification of mRNA targeted by unique miRNAs
was improved by additional evaluations of energy states of
sequences flanking the mRNA and the presence of stabilizing
elements within the mRNA [41,42]. For example, biochemical
identification approaches, where Argonaute proteins
associated with specific miRNA were co-immunoprecipitated
with target mRNA, showed a high concordance with computer
algorithm-based target predictions [43].

Initially it was thought that miRNAs either degrade the
newly synthesized protein as it emerged from the ribosome
or 'freeze' the ribosome during translation [44]. However,
when bound to its target, the miRNA-RISC complex was
shown to block the initiation of translation (specifically
the 5' cap recognition process), but no destabilization of
the transcript was observed [45es]. Subsequently, miRNA
binding was demonstrated to promote the movement of the
mRNA from the cytosol to sites of RNA degradation, termed
'P-bodies' [46,47]. This was achieved by RISC through the
removal of the 5' 7-methylguanosine cap, a characteristic
of mMRNA molecules and a prerequisite for their destruction
in P-bodies [47,48]. While P-body components play crucial
roles in mRNA decay, aggregation into P-bodies may not
be required for miRNA function, but might instead be a
. consequence of their activity [49]. This pathway is presumed
to be distinct from that of the siRNA-directed cleavage

pathway, where RISC first cleaves the target mRNA into
small fragments before degradation in exosomes. However,
some miRNA, can expedite poly(A) tail removal to facilitate
decay of the transcribed portion of mRNAs, even if they
contain elements that are imperfectly complementary to the
miRNA sequence [50]. This increased rate of deadenylation
of target mRNA does not result from blocking of translation,
and conversely poly(A) removal may not be required for
translational repression by miRNA [S0]. In addition, these
distinct regulatory influences of miRNA, namely translational
repression versus mRNA decay, are thought to be mediated
by similar protein complexes that deliver them to their mRNA
targets [17,22,51-54].

Role of miRNA in diverse biological
processes

- In vitro and in vivo studies and clinical trials have identified

miRNAs as important regulators of a broad spectrum of
biological processes, including tumorigenesis, aberrant
immune responses, muscle dysfunction, and organogenesis.
In this review, key functions of unique miRNAs thought to be
relevant in disease pathogenesis are highlighted to facilitate
the integration of the emerging understanding of miRNAs
with novel therapeutic approaches.

miRNAs and tumorigenesis

miRNA expression profiling utilizing 98 different small RNA
libraries, including sorted cell populations from healthy
donors, whole bone marrow, cell lines, and tumor cells
isolated from patients with hematological malignancies,
demonstrated that only five miRNAs are highly specific for
hematopoietic cells: miR-142, miR-144, miR-155, miR-223
and miR-150 [15ee]. However, miR-150 expression was
markedly reduced in B-cell lymphomas [15ee], and when
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ectopically expressed this miRNA inhibited the early
stages of B-cell development [55]. Therefore, deregulated
hematopoiesis by miRNAs may promote malignant
transformation.

Distinct miRNA signatures have also been associated with
prognostic factors and disease progression in chronic
lymphocytic leukemia (CLL) [56¢,57]. Reduced expression
of miR-29 and miR-181 in patients with CLL correlated
with high expression of the oncogene T-cell leukemia-
lymphoma 1, which is thought to be a causal event in the
development of the aggressive form of this disease [57].
The miRNA gene clusters miR-15a to miR-16-1 and miR-24-1
to miR-23b were also abnormally expressed in CLL and
the target of some of these miRNAs is the anti-apoptotic
BCL-2 gene, which is overexpressed in the majority of CLL
patients [S6e]. Therefore, miRNAs function as important
tumor suppressors and reduced expression may promote
malignant transformation [58,59].

Disturbances of miRNA expression may also play a role
in the initiation and progression of solid tumors. Many
studies demonstrated that miRNA profiles are dramatically
shifted in these tissues. For example, miRNA signatures in
pancreas tissues were able to distinguish adenocarcinomas
from normal samples [60]. In addition, expression
profiling in glioblastomas revealed high levels of miR-21,
miR-221 and miR-222 [61], and knockdown of miR-21 in those
cells triggered activation of caspases and led to increased
apoptotic cell death [62]. High expression of miR-21 may
also downregulate the tumor suppressor tropomyosin 1 in
breast cancer cells, thereby promoting tumorigenesis [63].
Some miRNAs (miR-26, -107 and -210) upregulated in tumor
tissues are only found in a hypoxic environment, where they
decrease pro-apoptotic signaling [64]. A group of miRNAs,
which share sequence identity with miR-16, negatively
regulates cellular growth and cell cycle progression [65].
A number of miRNA genes are located in regions of genomic
instability or cancer susceptibility loci, supporting a possible
role of altered miRNA expression in tumorigenesis [66,67].
Therefore, miRNA profiling might improve diagnosis and
predict prognosis of malignancies and suggests that miRNA
may play a key role in tumorigenesis by regulating tumor
suppressors, apoptosis, and cell cycle progression.

miRNAs in immune responses

Another ‘oncomir' specific for hematopoietic cells,
miR-155, may be implicated in the regulation of adaptive
immune function [68]. Mice deficient for miRNA-155 not
only displayed Th2 cell activation, but also a dysfunction
of B-lymphocytes and dendritic cells [69s]. This produced
an impaired antibody response, lung inflammation, and
airway remodeling [69s+]. By analyzing the transcriptome of
miR-155-deficient CD4+ T-cells, a wide spectrum of
miR-155-regulated genes, including Th2 cytokines,
chemokines, and transcription factors, were identified [69s].
Expression of miR-155 was induced by several cytokines as
well as TLR ligands that are important pathogen recognition
molecules [70]. Therefore, miR-155 is a target of a broad
'range of inflammatory mediators that promote humoral and

cellular immune responses to microbial infections, and in its
absence a marked immune dysfunction develops. A role of
miRNAs in T-cell function is additionally supported by studies
in mice lacking Dicer (a protein required for miRNA function)
in the T-cell lineage. These mice were not only depleted of
all miRNAs in their T-cell lineage, but were also prone to
immune pathologies because of an impaired regulatory T-cell
function, demonstrating a role for miRNAs in the regulation
of immune responses [71].

Altered miRNA expression profile has also been observed
in chronic inflammatory diseases. For example, miR-203
was upregulated in inflammatory skin lesions of patients
with psoriasis and this was associated with reduced levels
of an evolutionary conserved target of miR-203, suppressor
of cytokine signaling 3, which regulates inflammatory
responses and keratinocyte functions [72]. Therefore, miRNA
deregulation may contribute to dysfunction of the cross-talk
between resident and infiltrating immune cells {72].

LPS as well as antigen challenges are associated with
rapid disturbances in miRNA levels in the mouse lung,
suggesting that these changes might modify the subsequent
development of inflammatory and allergic responses [73,74].
Interestingly, LPS-induced miRNA expression was not altered
by anti-inflammatory glucocorticoid treatment, suggesting
that some miRNA effects may not be mediated via classical
steroid-sensitive signaling cascades [73]. Therefore, while
knowledge is still limited, there is a clear link between
aberrant miRNA expression and important pathways of the
innate and adaptive immune response.

miRNAs and viruses

Viruses also encode miRNAs and appear to evolve rapidly
and regulate both the viral life cycle and the interaction
between viruses and their hosts [75,76]. For example, the
CMV miRNA, hemv-miR-UL112, targets a host transcript that
is important in natural killer (NK)-cell activation (NK-cell
activating receptor MHC-I-related chain B), and inhibition of
hemv-miR-UL112 increased killing of CMV-infected cells by
NK-cells {77]. Viral miRNAs may also target their own viral
transcripts. Among 18 miRNAs encoded by EBV, 1 miRNA

- repressed viral replication during infection by targeting viral

polymerase [78]. Therefore, viruses appear to utilize miRNAs
for immune evasion.

Conversely, miRNAs derived from host cells may also limit
viral replication. miR-32 targets an mRNA encoded by the
primate foamy virus type 1 (PFV-1) and thereby restricts its
replication [79+,80]. PFV-1 produces a protein (Tas), which
may interfere with the miRNA pathway of the host [79e].
In addition, host miRNA may be utilized for viral replication
[81e]. Thus, miRNAs are an integral part of the antiviral
response, and could serve as diagnostic markers and novel
antiviral targets.

Muscle function and miRNAs

Hypertrophic growth and fibrosis of the cardiac muscle were
accompanied by disturbances in the levels of the cardiac-
specific miR-208 that regulate the expression of the primary
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contractile proteins of the heart, the a- and B-myosin heavy
chain [82#+]. The muscle-specific miR-1 and miR-133 may
also promote cardiac hypertrophy [83s,84], and miR-1
was upregulated in patients with coronary artery disease
and associated with the development of arrhythmias [85].
For example, the systemic neutralization of miR-133 by an
‘antagomir’ led to a cardiac hypertrophy [83e]. Targets of
miR-133 include RhoA, a GDP-GTP exchange protein
regulating cardiac hypertrophy; Cdc42, a signal transduction
kinase implicated in hypertrophy; and Nelf-negative
elongation factor A/Wolf-Hirschhorn syndrome candidate 2
protein, a nuclear factor involved in cardiogenesis. Reduced
miR-133 expression favored apoptosis by activation of
caspase-9 [86]. Therefore, miRNAs are key regulators of
cardiac muscle cell function and survival.

miRNAs in organogenesis and cell-lineage
decision

Many miRNAs are upregulated during development in a
tissue-specific manner, suggesting a broad involvement or
role for miRNAs in organogenesis, cell-lineage decisions, and
the capacity for self-renewal [87-90]. This is highlighted by
a study where depletion of Dicer in oocytes blocked their
progression through the first cell division [91]. Thus, miRNAs
may control translation of maternally derived genes in the
earliest developmental stages of the embryo.

Hematopoietic cells demonstrate different miRNA expression
patterns when compared with non-hematopoietic cells.
Differentiated effector cells of the hematopoietic lineage
(eg, Th1 and Th2 cells and mast cells) and precursors at
comparable stages of differentiation (eg, thymocytes
and pro-B-cells) show similarities in their miRNA profile
[15¢4,92]. Moreover, miRNA levels may also determine the
further differentiation of the hematopoietic stem cell into
effector cells. For example, early B-cell development may
be regulated by miR-150 and monocytopoiesis by several
miRNAs, including miR-17, miR-20a and miR-106a [55,93].

miRNAs are essential for normal muscle cell development in
mice. Blocking the biogenesis of miRNAs by inactivation of
Dicer in skeletal muscle resulted in hypoplasia and abnormal
morphology of myofibers [94].
required in the pancreas during embryogenesis {95]. Excess
of miRNAs, specifically miR-1, during embryogenesisimpaired
the proliferation of cardiomyocytes through downregulation
of the transcription factor Hand2 [41].

During lung development several miRNAs are differentially
expressed; some are maternally imprinted (eg, miR-154
and miR-335) and located on human chromosome 14q32.31
(mouse chromosome 12F2) [96]. This miRNA expression
profile was highly conserved between human and mouse
lung, again highlighting the importance of miRNAs in
organogenesis. Of note, individuals with both chromosome
14 alleles inherited from the father (paternal uniparental
isodisomy chromosome 14), and therefore complete
absence of the maternally imprinted miR-154 and miR-335
families, among other imprinted genes, exhibit a severe lung
hypoplasia [97].

Dicer activity was also -

Sequence variations in miRNA genes and
target sites

Sequence variations have been identified in human miRNA
precursor genes or their 5' flanking region, presumably
the miRNA promoter region [98). Germ-line or somatic
mutations were observed in 5 of 42 sequenced miRNAs in
11 of 75 chronic lymphocytic leukemia patients, but not in
160 healthy individuals [56+]. While sequence variations are
rare in miRNA precursor genes, a higher level of variation
was observed at miRNA target sites [99]. Approximately
400 SNPs were present at those target sites that are
otherwise evolutionarily conserved across mammals. Most
may be of functional relevance, as they could create novel
target sites for miRNAs in humans [99]. Another genome-
wide analysis of SNPs located in miRNA target sites showed
that twelve SNPs were associated with human cancers
[100].

An SNP localized in the 3' UTR of the myostatin GDF8
gene created a novel target site for miR-1 and miR-206,
and was associated with muscle mass in sheep [101]. In
separate studies, this gain-of-function mutation caused
post-transcriptional inhibition of myostatin contributing to
the muscular hypertrophy [102].

The effect of an SNP (rs5186) in one of the target sites
for miR-155, located within the 3' UTR of the human
angiotensin 1II type-1 receptor gene, was investigated using
reporter silencing assays [103]. miR-155 downregulated the
expression of the 1166A and not the 1166C allele of rs5186.
The 1166C allele has been associated with hypertension,
thereby linking miR-155 to regulation of blood pressure {103].
Taken together, SNPs located in miRNA precursor genes
and their target sites can affect miRNA target expression
and function and may be associated with phenotypic
differences, for example, cancer, muscular hypertrophy and
high blood pressure.

Inhibition of miRNA function

The use of synthetic antisense analog of miRNAs termed
‘antagomirs' has shown that cells expressing miRNAs of
interest can be targeted in vivo [104ee]. Antagomirs are
cholesterol-conjugated single-stranded RNA molecules of
21 to 23 nucleotides in length and entirely complementary
to the functional miRNA strand (Figure 2). They silence
miRNA expression in the liver, lung, intestine, heart, skin
and bone marrow for over a week following intravenous
injection, and thereby regulate the expression of genes
specifically predicted to be controlled by the respective
mMiRNA [83¢,104++,105].

Locked nucleic acids (LNAs) are RNA oligonucleotides in
which the ribose moiety is modified with an extra methylene
bridge, connecting the 2' with the 4' carbons to produce
increased metabolic stability, high affinity, improved
mismatch discrimination, and low toxicity [106]. LNAs are
currently utilized to inhibit miRNAs in cultured cells and as
probes for miRNAs [107], but they are'a particularly attractive
candidate for in vivo modulation of miRNA function.
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Figure 2. Inhibition of miRNA function by antagomirs.
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Antagomirs, cholesterol-conjugated single-stranded RNA
molecules of 21 to 23 nucleotides in length complementary to
the functiona! miRNA strand, co-localize with micro (mi)RNA to
preclude binding to its cognate mRNA target. CHOL-3 cholesterol
3, RISC RNA-induced silencing complex, Dicer Dicer RNase |ll,
TRBP transactivation response RNA-binding protein. (Adapted
with permission from the American Thoracic Society and Mattes J,
Yang M, Foster PS: Regulation of microRNA by antagomirs:
A new class of pharmacological antagonists for the specific
regulation of gene function? Am J Respir Cell Mol Biol {2007)
36(1):8-12 © 2007 American Thoracic Society) [16].

Another approach to inhibit miRNAs is the use of
synthetic mRNAs that contain multiple binding sites for a
specific miRNA, thereby inhibiting its association with the
endogenous target [108s]. To prevent cleavage of the mRNA
containing the miRNA binding site via the RNA interference
pathway, mismatches were introduced at position 9 to 12,
in close proximity to the seed sequence. These 'micro RNA
sponges'depressed miRNA targets at least as strongly as
chemically modified antisense cligonucleotides in cultured
cells [108¢]. The use of inducible and tissue-specific miRNA
sponges driven by RNA polymerase promoters and the
generation of transgenic animals expressing inducible
sponges may be feasible in the future.

Numerous RNA-binding proteins, only one of which is
miRISC, target the 3' UTRs of mRNAs. Intriguingly, by
binding to target mRNAs the RNA-binding protein Dnd-1
blocked their interaction with miRNAs and thereby protected
mRNAs from miRNA-mediated repression of initiation of
translation {109]. Thus RNA-binding proteins that are not
directly part of the miRNA complex, such as Dnd-1 or Hu
antigen R, may be utilized to fine-tune miRNA-mediated
silencing [109,110].

Overexpression of miRNAs

As discussed above, many tumors exhibit reduced miRNA
levels and it may be possible to restore those levels by
creating synthetic miRNAs or using gene-therapy based
approaches. This could be achieved by nonviral or viral
delivery of the miRNA/transgene ex vivo or in vivo. As
experience with these delivery techniques accumulates,
the understanding of miRNA regulation is improving and
therefore maintaining normal miRNA levels in specific tissues
is becoming increasingly feasible.

Conclusion

Diverse roles of miRNAs in tumorigenesis and apoptosis,
immune and inflammatory responses, muscle differentiation
and function, and organogenesis have been suggested.
miRNA profiling can also be used as a novel diagnostic
and prognostic marker of disease. The possibility of
modulating miRNA levels in vivo is likely to lead to a better
understanding of the fundamental mechanisms that underpin
the development of a broad range of diseases and may
ultimately produce novel therapeutic approaches [111,112].
Major challenges in the field of therapeutic miRNA modulation
include the development of efficient and non-toxic delivery
techniques, the prevention of off-target silencing effects,
and the maintenance of physiological miRNA levels in gene-
targeted tissues.
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